Abstract

A new efficient method is proposed for inducing magnetism on the surface of a topological insulator through the deposition of a thin film of an isostructural magnetic insulator whose atomic composition is maximally close to that of the topological material. Such a design prevents the formation of a strong interface potential between subsystems. As a result, the topological state freely penetrates into the magnetic region, where it interacts with the exchange field and gets significantly split at the Dirac point. It is shown that the application of this approach to thin films of a tetradymite-like topological insulator allows realizing the quantum anomalous Hall state with a band gap of several tens of meV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.