Abstract

We report Knight-shift experiments on the superconducting heavy-electron material CeCoIn5 that allow one to track with some precision the behavior of the heavy-electron Kondo liquid in the superconducting state with results in agreement with BCS theory. An analysis of the 115In nuclear quadrupole resonance spin-lattice relaxation rate T1(-1) measurements under pressure reveals the presence of 2d magnetic quantum critical fluctuations in the heavy-electron component that are a promising candidate for the pairing mechanism in this material. Our results are consistent with an antiferromagnetic quantum critical point located at slightly negative pressure in CeCoIn5 and provide additional evidence for significant similarities between the heavy-electron materials and the high-T(c) cuprates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call