Abstract

Magnetization plateaux emerging in quantum spin systems due to spontaneously breaking of translational symmetry have been reported both theoretically and experimentally. The broken symmetry can induce reconstruction of elementary excitations such as Goldstone and Higgs modes, whereas its microscopic mechanism and reconstructed quasi-particle in magnetization-plateau phases have remained unclear so far. Here we theoretically study magnetic excitations in the magnetization-plateau phases of a frustrated spin ladder by using dynamical density-matrix renormalization-group method. Additionally, analytical approaches with perturbation theory are performed to obtain intuitive view of magnetic excitations. Comparison between numerical and analytical results indicates the presence of a reconstructed quasi-particle originating from spontaneously broken translational symmetry, which is realized as a collective mode of spin trimer called trimeron.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.