Abstract

We determine the initial temperature dependence of the exchange splitting Delta(T) in the weak itinerant ferromagnet ZrZn2 (T{C}=28 K) using the de Haas-van Alphen effect. There is a large decrease in Delta with temperature in the range 0.5< or =T< or =4 K. A comparison of Delta(T) with the magnetization M(T) shows that the dominant process responsible for the reduction of M is not the thermal excitation of spin waves, but a repopulation of the spin- upward arrow and spin- downward arrow Fermi surfaces. This contrasts with the behavior in Fe where there is no observable change in Delta and the thermal excitation of spin waves is the only observable spin-flipping process at low temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.