Abstract

Electron spin is very important for investigating magnetic properties of nano-structure surface on the atomic scale. Magnetic exchange force microscope (MExFM) which is a significant method of measuring exchange force of electron spin, is adopted. However, the external magnetic field is necessary for the MExFM, which will damage the structure of the sample surface; further, cross-talk between topography and spin information becomes serious for separating the two signals in MExFM measurement. These shortcomings will restrict the application of MExFM. In order to solve these problems, we develop a new method to separate the topography from the spin information using ferromagnetic resonance by microwave radiation combined MExFM and atomic force microscopy. We demonstrate that the topography and spin information can be completely separated from each other using this method theoretically and experimentally. MExFM using ferromagnetic resonance effect is very useful for developing spintronic devices and new-generation magnetic materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call