Abstract

Applying two-dimensional monolayer materials in nanoelectronics and spintronics is hindered by a lack of ordered and separately distributed spin structures. We investigate the electronic and magnetic properties of one-dimensional zigzag and armchair 3d transition metal (TM) nanowires on graphyne (GY), using density functional theory plus Hubbard U (DFT + U). The 3d TM nanowires are formed on graphyne (GY) surfaces. TM atoms separately and regularly embed within GY, achieving long-range magnetic spin ordering. TM exchange coupling of the zigzag and armchair nanowires is mediated by sp-hybridized carbon, and results in long-range magnetic order and magnetic anisotropy. The magnetic coupling mechanism is explained by competition between through-bond and through-space interactions derived from superexchange. These results aid the realization of GY in spintronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call