Abstract

Resolvers are widely used in the control of industrial inverter driven motors. Among different types of resolvers, disk-type wound-rotor resolvers have superior performance under mechanical faults. However, the rotary transformer’s (RT’s) presence in the inner side of the resolver’s core leads to additional radial length. To overcome this problem, disk-type wound-rotor resolver without RT’s core has been proposed. However, the optimization using time stepping finite-element method (TSFEM) is time consuming due to 3-D structure of this resolver. Accordingly, in this paper, an analytical model based on the magnetic equivalent circuit is proposed for the design and optimization process. The results of the presented model are verified using 3-D TSFEM and experimental test on a prototype resolver.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.