Abstract

AbstractSoil formation usually results in an increase in magnetic susceptibility. The magnetic properties of the products of transformation of ferrihydrite, a typical precursor of other soil Fe oxides, were examined in the present work. Synthetic 2-line ferrihydrite was aged at two temperatures (25 and 50°C) and two different relative humidities (80 and 100%) in the presence of silicate, phosphate, citrate, and tartrate as adsorbed ligands (molar anion/Fe ratio = 1–3%). The ligands delayed or prevented the transformation of ferrihydrite to hematite. The magnetic susceptibility of the ferrihydrite transformation products increased with aging, the rate of increase depending on the type of ligand added and its concentration. The largest increase in magnetic susceptibility, sixfold, was obtained with ferrihydrite in a citrate/Fe ratio of 1%, after 1500 days. The resulting magnetic products exihibited superparamagnetic behavior at room temperature and high coercivity at 5 K. The formation of an intermediate ferrimagnetic phase in the ferrihydrite-to-hematite transformation might explain the magnetic enhancement observed in many aerobic soils lacking other sources of magnetic minerals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.