Abstract

The giant magnetostrictive transducer (GMT) can be widely used in ultra-precision machining in precision-fluid-control fields. The temperature stability of GMT is critical for the reliable generation of output characteristics. This study presents a magnetic-energy-losses method for the GMT working at high frequency, and designs a temperature-stable control system to improve energy transmission and heat dissipation. Based on the loss-separation theory and experimental data, the temperature-rise characteristics of the transducer are analyzed. The temperature rise considers the effects of hysteresis loss, the eddy-current loss, the anomalous loss and the Joule heat. A constitutive relation among losses, frequency and magnetic-flux density is given. The temperature distribution of the transducer can be quickly and accurately calculated, using the constitutive equation. According to the convective heat-transfer and the thermal-compensation method, a temperature-control system is designed. A prototype of the system is then fabricated and tested to verify the feasibility and efficacy of the proposed design methods. The results demonstrate that the output- displacement deviation can be controlled at less than 0.65 μm, and the temperature difference is less than 3 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.