Abstract

We use atomistic stochastic Landau-Lifshitz-Slonczewski simulations to study the interaction between large thermal fluctuations and spin transfer torques in the magnetic layers of spin valves. At temperatures near the Curie temperature $T_{\rm C}$, spin currents measurably change the size of the magnetization (i.e. there is a {\it longitudinal} spin transfer effect). The change in magnetization of the free magnetic layer in a spin valve modifies the temperature dependence of the applied field-applied current phase diagram for temperatures near $T_{\rm C}$. These atomistic simulations can be accurately described by a Landau-Lifshitz-Bloch + Slonczewski equation, which is a thermally averaged mean field theory. Both the simulation and the mean field theory show that a longitudinal spin transfer effect can be a substantial fraction of the magnetization close to $T_{\rm C}$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.