Abstract

A smart magnetic targeting drug carrier (MCNC/PAA) comprising an approximately 100 nm sized magnetic colloid nanocrystal cluster (MCNC) core and a pH-responsive cross-linked poly(acrylic acid) (PAA) shell is reported. The abundant carboxyl groups in the shell enable the resultant MCNC/PAA to easily load a large amount of doxorubicin (DOX) (up to 44.6%) via the strong interaction between the DOX and the carboxyl group in a neutral solution. Interestingly, a synergistic pH-responsive effect derived from the entrapped DOX and PAA network was found to effectively manipulate the drug releasing behavior at 37 °C. It was found that the premature release was highly restricted at a pH of 7.4, and upon reduction in pH from 7.4 to 5.0 or 4.0, a large amount of drug was rapidly released. Compared with the synthesized MCNC/PNIPAM, MCNC/PHEMA and MCNC/PDMAPMA nanocarriers, the MCNC/PAA was preferably suited to drug delivery. In addition, the composite nanocarriers could be tracked by magnetic resonance imaging (MRI). The cytotoxicity assay of MCNC/PAA to normal cells indicated that the composite nanospheres were biocompatible and suitable as drug carriers. Meanwhile, the DOX-loaded composite nanospheres had more potent cytotoxicity than free DOX to HeLa cells. These results clearly imply that the MCNC/PAA nanocarrier is a promising platform that can be applied to construct a smart drug delivery system with magnetic targeting and pH-stimulation, as well as tracking by MRI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call