Abstract

We found by micromagnetic simulations that the motion of a transverse wall (TW)–type domain wall in magnetic thin-film nanostripes can be manipulated via interaction with spin waves (SWs) propagating through the TW. The velocity of the TW motion can be controlled by changes of the frequency and amplitude of the propagating SWs. Moreover, the TW motion is efficiently driven by specific SW frequencies that coincide with the resonant frequencies of the local modes existing inside the TW structure. The use of propagating SWs, whose frequencies are tuned to those of the intrinsic TW modes, is an alternative approach for controlling TW motion in nanostripes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call