Abstract

The coupling of rectangular magnetic 2000×1000×20 nm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> structures with flux-closure domain configurations is studied using micromagnetic simulations with periodic boundary conditions. In order to understand the origin of the interaction, the magnetic structure of a single element is analyzed in detail to calculate its magnetostatic fringe field. Both, our simulations as well as earlier experimental data reveal an interesting phenomenon: instead of four domains forming the well-known Landau state there are six domains. A consistent magnitude of the effect can be obtained, when the highly susceptible paramagnetic “coating layer” used in the experiment is included in the simulation. The coupling behavior of both, horizontally and vertically aligned arrays of rectangles is explained by the magnetostatic field of the single element. We show that for arrays of elements that have a coating layer inter-element coupling depends strongly on properties of this coating layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.