Abstract

Plant microRNAs play critical roles in post-transcriptional gene regulation of many processes, thus motivating the development of accurate and user-friendly microRNA detection methods for better understanding of, e.g., plant growth, development, and abiotic/biotic stress responses. By integrating the capture probe, fuel strand, primer, and template onto the surface of a magnetic nanoparticle (MNP), we demonstrated a magnetic DNA nanomachine that could conduct an on-particle cascade amplification reaction in response to the presence of target microRNA. The cascade amplification consists of an exonuclease III-assisted target recycling step and a rolling circle amplification step, leading to changes in the MNP arrangement that can be quantified by ferromagnetic resonance spectroscopy. After a careful investigation of the exonuclease III side reaction, the biosensor offers a detection limit of 15 fM with a total assay time of ca. 70 min. Moreover, our magnetic DNA nanomachine is capable of discriminating the target microRNA from its family members. Our biosensor has also been tested on total endogenous microRNAs extracted from Arabidopsis thaliana leaves, with a performance comparable to qRT-PCR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.