Abstract

Cantilever magnetometry with moment resolution better than 10(4)micro(B) was used to study individual nanomagnets. By using the fluctuation-dissipation theorem to interpret measurements of field-induced cantilever damping, the low frequency spectral density of magnetic fluctuations could be determined with resolution better than 1micro(B) Hz-1/2. Cobalt nanowires exhibited significant magnetic dissipation and the associated magnetic fluctuations were found to have 1/f frequency dependence. In individual submicron rare-earth alloy magnets, the dissipation/fluctuation was very small and not distinguishable from that of a bare silicon cantilever.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.