Abstract

Maltodextrin- and β-cyclodextrin-functionalized magnetic graphene oxide (mGO/β-CD/MD), a novel hydrophilic-lipophilic composite, was successfully fabricated and used for the co-extraction of triazines and triazoles from vegetable samples before HPLC-UV analysis. mGO/β-CD/MD was synthesized by chemical bonding of β-CD and MD to the surface of mGO, using epichlorohydrin (ECH) as a linker. The successful synthesis of mGO/β-CD/MD was confirmed by characterization tests, including attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA), energy-dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET), and Barrett-Joyner-Halenda (BJH) analyses. The hydrophobic cavity of β-CD and a large number of hydroxyl groups on the MD structure contributed to the co-extraction of mentioned pesticides with a wide range of polarity. Under the optimized condition (sorbent amount, 30mg; desorption time, 10min; desorption solvent volume, 300 μL; desorption solvent, methanol/acetonitrile (1:1) containing 5% (v/v) acetic acid; extraction time, 20min; and pH of sample solution, 7.0), good linearity within the range 1.0-1000μg L-1 (r2 ≥ 0.992) was achieved. Extraction efficiencies were in the range 66.4-95.3%, and the limits of detection were 0.01-0.08μg L-1. Relative recoveries for spiked samples were obtained in the range 88.4-112.0%, indicating that the matrix effect was insignificant, and good precisions (intra- and inter-day) were also achieved (RSDs < 9.0%, n = 3). The results confirmed that the developed method was efficient for thedetermination oftrace amounts of pesticides in potato, tomato, and corn samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call