Abstract

We explore a possibility to control magnetic dipole emission with plasmonic cavities, placing Eu3+ emitters inside profile-modulated metal-dielectric-metal structures. Significant variations in the branching ratio of the magnetic and electric dipole transitions are observed as the function of the thickness of the intermediate layer. The experimental results are confirmed with numerical simulations which account for cavity and gap plasmon resonances and predict modifications in the spontaneous emission spectrum as the function of the gap size and a strong directionality of the emission for small thicknesses of the intermediate layer. The implications of having a competition between electric and magnetic dipole relaxation channels in Eu3+ are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call