Abstract

The magnetic ordering of frustrated arrays of nanoscale islands can be strongly influenced by the array patterns. We theoretically present three kinds of artificial geometrically frustrated systems with different brick-shaped geometries, defined as brick-shaped lattices, and investigate their magnetic dipolar ordering at the ground state using the Monte Carlo method. The simulated results show that the magnetic ordering of three brick-shaped frustrated lattices depends strongly on the strength of dipolar interactions, depending on the lattice spacing. It is found that the long-range dipolar interactions tend to suppress the long-range ordered state and induce the short-range quasi-ice state at each vertex of the lattices. In addition, the correlations for neighboring spin pairs are closely related to not only the dipolar coupling strength but also the geometry of the lattices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.