Abstract
AbstractThe magnetic analog of a semiconductor diode, demonstrating unidirectional electrical transport, is a highly desirable functionality for spintronics application, as it can play a dual role as magnetic memory device and logic element. However, creating such a functional material or device with operation ability at room temperature in the absence of any external tuning parameter, for instance a magnetic field, is a challenge till date. In this study, the finding of semiconductor diode‐type rectification in a 2D honeycomb lattice, made of an ultrasmall permalloy magnet with a typical length of ≈12 nm is reported. The unidirectional electrical transport behavior, characterized by the asymmetric colossal enhancement in differential conductivity at a modest current application of ≈10–15 µA, persists to T = 300 K in honeycomb lattice of a moderate thickness of ≈6 nm. Importantly, the unidirectional biasing arises without the application of a magnetic field with an output power, ≈30 nW, by three orders of magnitude smaller than a semiconductor junction diode. Together, these properties provide a new vista for spintronics research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.