Abstract
Cation diffusion is an important rate-limiting process in the growth of pyrrhotite (Fe1-xS) in passivating films on steels exposed to sulfidic environments, and for proposed synthetic applications of Fe1-xS, for example single-phase magnetic switching devices. Above the Néel temperature TN of 315 °C, where Fe1-xS is paramagnetic and structurally disordered, iron self-diffusivity *DFe predictably follows a standard, established Arrhenius law with temperature. However, we report (57)Fe tracer diffusion measurements below TN, obtained using secondary ion mass spectrometry (SIMS), that demonstrate a 100-fold reduction in diffusion coefficient as compared to the extrapolated, paramagnetic Arrhenius trend at 150 °C. The results can be described by a magnetic diffusion anomaly, where the vacancy migration energy for the spontaneously-magnetized cation sublattice is increased by approximately 40% over the paramagnetic state. These constitute the first set of consistent diffusivity data obtained in magnetic pyrrhotite, allowing more accurate prediction of pyrrhotite growth rates and determination of magnetic properties for synthetic devices.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.