Abstract

Vibrating wire viscometers rely on the principle that the viscosity of the fluid surrounding the wire provides the dominant damping action on the motion of the wire. However, some residual damping is always present due to other effects such as internal friction of the wire (anelastic relaxation), losses through the wire supports, and magnetic damping. Magnetic damping is a physical mechanism that has received relatively less attention than internal friction in the context of viscometers. The phenomenon arises because the current induced by the motion of the wire contributes to the magnetic field in such a way as to oppose its own motion. For a test circuit using a 40 μm diameter tungsten wire in a 0.3 T magnetic field, surprisingly, the effect of magnetic damping was found to be of a similar order of magnitude to other non-viscous damping effects. The effect can be accounted for by including the internal impedance of the oscillating voltage source in the model and it disappears completely for a perfect oscillating current source.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call