Abstract

We successfully prepared face-centered cubic (fcc) Cu-Ni (core-shell) nanoparticles by intramolecular reduction of formate complexes of Cu(2+) and Ni(2+) with long-chain amine ligands in a one-pot reaction within an extremely short time realized only under microwave irradiation. Observation by an HAADF-STEM technique showed that the nanostructure in one particle consisted of a Ni-rich shell and a Cu-rich core. Cu(4)Ni(6) nanoparticles with an average size of 11.7 nm were comprised of a Cu core with a diameter of ca. 6.0 nm, a Ni shell ca. 1.6 nm thick and a 0.9 nm thick interlayer of mixed Cu-Ni alloy between the Cu core and the Ni shell. Both the oxidation characteristics and the magnetic properties were dramatically affected by the molar ratios of Cu : Ni in the Cu-Ni nanoparticles. The magnetization of Cu(3)Ni(7) and Cu(4)Ni(6) comprised of a diamagnetic Cu-rich core, ferromagnetic Ni-rich shell and antiferromagnetic NiO-rich layer on the particle surface showed an exchange bias (209 and 143 Oe, respectively).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call