Abstract
The preparation, crystal structures and magnetic properties of the heterobimetallic complexes of formula [Mn(III)(n-MeOsalen)(H(2)O)(mu-CN)Fe(III)(bpym)(CN)(3)]·mH(2)O with n = m = 3 (1) and n = 4 and m = 2 (2) [n-MeOsalen(2-) = N,N'-ethylenebis(n-methoxysalicylideneiminate) dianion and bpym = 2,2'-bipyrimidine] are reported. 1 and 2 are dinuclear neutral species where the cyano-bearing low-spin unit [Fe(III)(bpym)(CN)(4)](-) acts as a monodentate ligand towards the [Mn(III)(SB)(solv)(x)](+) entity (SB = tetradentate Schiff-base) through one of its four cyano groups. Adjacent heterobimetallic units are interlinked through hydrogen bonds involving the coordinated water molecule of one dinuclear unit and the phenolate oxygen atoms of the neighbouring one to afford pairs of dimers with values of the interdimer Mn···Mn distance of 4.925(20) (1) and 5.0508(25) Å (2). The analysis of the magnetic data of 1 and 2 in the temperature range 1.9-300 K shows the coexistence of weak ferro- [J = +2.95 (1) and +3.88 cm(-1) (2)] and antiferromagnetic interactions [j = -1.91 (1) and -0.70 cm(-1) (2)] through the single cyano bridge and hydrogen bonds, respectively (the Hamiltonian being of the type Ĥ = J[Ŝ(Fe)·Ŝ(Mn) + Ŝ(Fe')·Ŝ(Mn')] -jŜ(Mn)·Ŝ(Mn')). Theoretical calculations using methods based on density functional theory (DFT) have been used to substantiate the nature and magnitude of the magnetic coupling observed in 1 and 2 and also to analyze the dependence of the magnetic coupling on the structural parameters for the Fe-C-N-Mn skeleton. An extension of the calculations to selected examples of heterobimetallic Fe(III)-C-N-Mn(III) compounds with a different number of cyano groups on the low-spin iron(III) precursor has been carried out allowing us to illustrate the influence of the symmetry of the magnetic orbital of the iron center on the magnetic coupling in this heterobimetallic unit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.