Abstract

AbstractThe anionic iota carrageenan polysaccharide is enriched with FeII and FeIII by ion exchange against FeSO4 and FeCl3. With divalent iron, portions of polymer chains undergo a secondary structure transition from random coils to single helices. The single‐chain macromolecular conformations can be manipulated by an external magnetic field: upon exposure to 1.1 T, the helical portions exhibit 1.5‐fold stiffening and 1.1‐fold stretching, whereas the coil conformations respond much less as a result of lower contents of condensed iron ions. Along with the coil–helix transition, the trivalent iron triggers the formation of superstructures. The applicability of iron‐enriched iota carrageenan as functional ingredient for food fortification is tested by free Fe2+ and Fe3+ contents, respectively, with the most promising iota‐FeIII yielding 53 % of bound iron, which is due to the superstructures, where the ferric ions are chelated by the supramolecularly self‐assembled polymer host.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.