Abstract

In this paper, we propose a new type of continuum robot, referred to as a magnetic concentric tube robot (M-CTR), for performing minimally invasive surgery in narrow and difficult-to-access areas. The robot combines concentric tubes and magnetic actuation to benefit from the ‘follow the leader’ behaviour, the dexterity and stability of existing robots, while targeting millimetre-sized external diameters. These three kinematic properties are assessed through numerical and experimental studies performed on a prototype of a M-CTR. They are performed with general forward and inverse kineto-static models of the robot, continuation and bifurcation analysis, and a specific experimental setup. The prototype presents unique capabilities in terms of deployment and active stability management, while its dexterity in terms of tip orientability is also among the best reported for other robots at its scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call