Abstract

In this work, magnetic flocculant (Fe3O4@PP) was synthesized using plant polyphenol (PP) as a shaping ligand via in situ self-assembly. Characterization results revealed that Fe3O4@PP exhibited uniform particle size and excellent dispersibility with PP coating amount of 16.4 %. Experimental results suggested that Fe3O4@PP showed excellent turbidity removal efficiency in a wide pH range (3.0–10) and initial turbidity range (50–2000 NTU). Under the optimal conditions, Fe3O4@PP achieved 95.2 % of turbidity removal for simulated kaolin suspension and 96.9 % for actual wastewater. Fe3O4@PP exhibited excellent recycling and reusability properties, with high recycling efficiency of 93.3 % even after the fifth cycle. Microscopic observation revealed the formation process of magnetic flocs, involving particle aggregation, chain and cluster formation, and dense network aggregate formation. The structural characteristics and size of magnetic flocs were found to be significantly influenced by the combined effects of magnetic force, electric charge, van der Waals force, and functional groups on the surface of PP. The extended Deryaguin-Landau-Verwey-Overbeek models indicated that magnetic interactions were the primary mechanism for magnetic flocculation, accompanied by charge neutralization, adsorption bridging, sweeping, and net trapping.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.