Abstract

Magnetic clouds modify the structure of the interplanetary magnetic field on spatial scales of tenth of AU. Their influence on the transport of energetic charged particles is studied with a numerical model that treats the magnetic cloud as an outward propagating modification of the focusing length. As a rule of thumb, the influence of the magnetic cloud on particle intensity and anisotropy profiles increases with decreasing particle mean free path and decreasing particle speed. Three cases are considered: (1) when the magnetic cloud is the driver of a shock that accelerates particles as it propagates outward, (2) when the magnetic cloud interacts with a prior solar energetic particle event, and (3) when a magnetic cloud already is present in interplanetary space at the time of a solar energetic particle event. In the latter case the cloud acts as a barrier, storing the bulk of the particles in its downstream medium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call