Abstract
β-galactosidase is an enzyme capable of hydrolysing lactose, used in various branches of industry, mainly the food industry. As the efficient industrial use of enzymes depends on their reuse, it is necessary to find an effective method for immobilisation, maintaining high activity and stability. The present work proposes cross-linked magnetic cross-linked enzyme aggregates (mCLEAs) to prepare heterogeneous biocatalysts of β-galactosidase. Different concentrations of glutaraldehyde (0.6%, 1.0%, 1.5%), used as a cross-linking agent, were studied. The use of dextran-aldehyde as an alternative cross-linking agent was also evaluated. The mCLEAs presented increased recovered activity directly related to the concentration of glutaraldehyde. Modifications to the protocol to prepare mCLEAs with glutaraldehyde, adding a competitive inhibitor or polymer coating, have not been effective in increasing the recovered activity of the heterogeneous biocatalysts or its thermal stability. The biocatalyst prepared using dextran-aldehyde presented 73.6% recovered activity, aside from substrate affinity equivalent to the free enzyme. The thermal stability at 60 °C was higher for the biocatalyst prepared with glutaraldehyde (mCLEA-GLU-1.5) than the one produced with dextran-aldehyde (mCLEA-DEX), and the opposite happened at 50 °C. Results obtained for lactose hydrolysis, the use of its product to produce a rare sugar (D-tagatose) and operational and storage stability indicate that heterogeneous biocatalysts have adequate characteristics for industrial use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.