Abstract

CubeSats are being increasingly utilized for demanding astronomical and Earth observation applications where precise pointing and stability are critical requirements. Such precision is difficult to achieve in the case of CubeSats, mainly because of their small moment of inertia, this means that even small disturbance torques, such as those due to a residual magnetic moment, can still be an issue and have a significant effect on the attitude of spacecraft, when a high degree of stability is required. Recently, a PhD research program has been undertaken at Surrey University, to investigate the magnetic characteristics of CubeSats, it has been found that the disturbances may be mitigated by good engineering practice, in terms of minimizing current-loop areas and reducing the use of permeable materials. This paper discusses the dominant source nanosatellites disturbances and presents a survey and a short description of magnetic cleanliness techniques to minimize the effect of the residual magnetic field. It is mainly intended to supply a guide for CubeSat community to design future CubeSats with improved attitude stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.