Abstract
In this paper, we present a facile approach for the synthesis of polysaccharide-based carbon aerogel by sol–gel processing, freeze-drying, and pyrolysis of a sodium carboxymethyl cellulose/sodium montmorillonite composite aerogel. The as-prepared carbon aerogel was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffractometry, nitrogen adsorption measurements, and vibrating sample magnetometry. The carbon aerogel obtained in this study possessed low density (0.064 ± 0.0029 g/cm3), a high surface area (185 m2/g), and flame retardance. Measurements of the magnetic properties indicated that the carbon aerogel exhibited typical ferromagnetic characteristic at room temperature. The absorption capacity of the carbon aerogel for oils and organic solvents is as much as 10–20 times its own weight. Moreover, a method of combustion could be employed to recycle the carbon aerogel. The results imply that the carbon aerogel is a potential cost-effective adsorbent for oil and organic pollutants from aqueous solutions in environmental pollution cleanup.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.