Abstract

Magnetic and NMR relaxivity properties of γ-Fe2O3 nanoparticles embedded into the walls of polyelectrolyte multilayer capsules and freely dispersed in a sodium borate buffer solution have been investigated. The different geometric distribution of both configurations provides the opportunity to study the relationship of water accessibility and magnetic properties of particles on the NMR relaxivity. Changes in their blocking temperature and average dipolar field were modeled as a function of packing fraction in the ensemble of free and entrapped nanoparticles. For free nanoparticles with relatively low concentration, relaxivity values increase with packing fraction according to an increase in the dipolar field and larger water accessibility. However, for embedded nanoparticles in the capsule wall, packing fractions should be limited to optimize the efficiency of this system as magnetic resonance imaging (MRI) contrast agent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.