Abstract

Abstract We present results from an analytical model for magnetic buoyancy and rotational instabilities in a full spherical shell tachocline that includes rotation, differential rotation close to that observed helioseismically, and toroidal field. Perturbation solutions are found for the limit of large latitudinal wave number, a limit commonly used to maximize instability due to magnetic buoyancy. We find that at all middle and high latitudes vigorous rotational instability is induced by weak toroidal fields, particularly for high longitudinal wave number, even when the vertical rotation gradient is marginally stable without toroidal field. We infer that this instability will prevent much storage of toroidal fields in the tachocline at these latitudes, but could be responsible for the appearance of ephemeral active regions there. By contrast, the low-latitude vertical rotation gradient, opposite in sign to that at high latitudes, is not only stable itself but also prevents magnetic buoyancy instability until the peak toroidal field is raised above a threshold of about 9 kG at the equator, declining to zero where the vertical rotation gradient changes sign, at in our model. Thus this rotation gradient provides a previously unnoticed mechanism for storage of toroidal fields until they amplify by dynamo action to order 10 kG, whereupon they can overcome the rotation gradient to emerge as sunspots. These results provide a new explanation for why sunspots are seen only at low latitudes. The purely rotational instability at latitudes above 50°, even without toroidal fields, also suggests that the high-latitude tachocline should be much thicker, due to HD turbulence, than has been inferred for lower latitudes from helioseismic measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.