Abstract

Magnetic fields are usually considered dynamically important in star formation when the dimensionless mass-to-flux ratio is close to, or less than, unity (λ ≲ 1). We show that, in disk formation, the requirement is far less stringent. This conclusion is drawn from a set of 2D (axisymmetric) simulations of the collapse of rotating, singular isothermal cores magnetized to different degrees. We find that a weak field corresponding to λ ∼ 100 can begin to disrupt the rotationally supported disk through magnetic braking, by creating regions of rapid, supersonic collapse in the disk. These regions are separated by one or more centrifugal barriers, where the rapid infall is temporarily halted. The number of centrifugal barriers increases with the mass-to-flux ratio λ. When λ ≳ 100, they merge together to form a more or less contiguous, rotationally supported disk. Even though the magnetic field in such a case is extremely weak on the scale of dense cores, it is amplified by collapse and differential rotation, to the extent that its pressure dominates the thermal pressure in both the disk and its surrounding region. For relatively strongly magnetized cores with λ ≲ 10, the disk formation is suppressed completely, as found previously. A new feature is that the mass accretion is highly episodic, due to reconnection of the magnetic field lines accumulated near the center. For rotationally supported disks to appear during the protostellar mass accretion phase of star formation in dense cores with realistic field strengths, the powerful magnetic brake must be weakened, perhaps through nonideal MHD effects. Another possibility is to remove, through protostellar winds, the material that acts to brake the disk rotation. We discuss the possibility of observing a generic product of the magnetic braking, an extended circumstellar region that is supported by a combination of toroidal magnetic field and rotation—a "magnetogyrosphere"—interferometrically.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call