Abstract

The structures and magnetic properties of [K(18-crown-6)](+) (1) and [K(18-crown-6)(THF)2](+) (2) salts of the η(8)-cyclooctatetraenide sandwich complex [Er(COT)2](-) (COT(2-) = cyclooctatetraene dianion) are reported. Despite slight differences in symmetry, both compounds exhibit slow magnetic relaxation under zero applied dc field with relaxation barriers of ∼150 cm(-1) and waist-restricted magnetic hysteresis. Dc relaxation and dilution studies suggest that the drop in the magnetic hysteresis near zero field is influenced by a bulk magnetic avalanche effect coupled with tunneling of the magnetization. Through dilution with [K(18-crown-6)(THF)2][Y(COT)2] (3), these phenomena are substantially quenched, resulting in an open hysteresis loop to 10 K. Importantly, this represents the highest blocking temperature yet observed for a mononuclear complex and the second highest for any single-molecule magnet. A comprehensive comparative analysis of the magnetism of [K(18-crown-6)][Ln(COT)2] (Ln = Sm, Tb, Dy, Ho, Yb) reveals slow relaxation only for [K(18-crown-6)][Dy(COT)2] (4) with weak temperature dependence. Collectively, these results highlight the utility of an equatorial ligand field for facilitating slow magnetic relaxation in the prolate Er(III) ion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call