Abstract

Magnetically induced optical birefringence (Δn) was measured for magnetoferritin (MFer), horse spleen ferritin (HSF) and nanoscale magnetite aqueous suspensions. The anisotropy of optical polarizability was calculated. The average magnetic dipole moment calculated assuming the Langevin model was about 20,000 and 8500μB per particle, for magnetite nanoparticle and magnetoferritin, respectively. Poor fitting results and the unphysical value of average magnetic moment per Fe ion for MFer excluded the use of the simple Langevin model for description of Δn for this compound. It was deduced that for MFer the estimated average magnetic moment should be about 1125μB per molecule. A magnetic contribution from the protein shell was found to be negligible. Results from the low-field region permit the calculation of the Cotton–Mouton (C–M) constants and their comparison for the substances studied. It was shown that magnetic birefringence and C–M constant can be powerful parameters in identification of the magnetic core structure of ferritins, especially useful in biomedicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.