Abstract
There are limited economic and reliable tools to monitor the effects of airborne particulate matter PM originating from rapid industrialization, urbanization, population growth, and economic development. It is now well established that urban PM contains magnetic particles along with other air pollutants. The velocity and temporal variability of the deposition of such PM on tree leaves are subject to the pollution sources, climate, and local atmospheric conditions. Therefore, these variables have to be taken into account during a biomonitoring. This study presents a magnetic biomonitoring in the city of Querétaro. In the city's metropolitan area, the most abundant and perennial tree species for biomonitoring is Ficus benjamina. For leaves of this species, the number of days needed for collection NDNC was measured, taking into account the meteorological conditions and the time at which they reached the saturation of airborne PM (pollutants). By means of sequential sampling, we identified that the minimum NDNC after a rainfall > 3mm is 15days. In such a period, total suspended particle TSP depositions reach its dynamic equilibrium. This behavior can be observed from measurements of specific magnetic susceptibility χ in Ficus benjamina samples and their comparison with TSP depositions collected with traditional Hi-Vol monitoring systems. After the NDNC calculation, a magnetic monitoring was performed with the biomonitor Ficus benjamina to evaluate the air quality at different sites in the metropolitan area every month for a period of 5months. Values of χ ranged from 0.45 to 18.52 × 10-8m3kg-1. The species Ficus benjamina can be used as a biomonitor in the city of Querétaro only in seasons (winter-spring) with no or low rainfall. The species has the advantage of providing current PM information about a specific period of time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.