Abstract
Biochar is a carbonaceous and porous material with limited adsorption capacity, which increases by modifying its surface. Many of the biochars modified with magnetic nanoparticles reported previously were obtained in two steps: first, the biomass was pyrolyzed, and then the modification was performed. In this research, a biochar with Fe3O4 particles was obtained during the pyrolysis process. Corn cob residues were used to obtain the biochar (i.e., BCM) and the magnetic one (i.e., BCMFe). The BCMFe biochar was synthesized by a chemical coprecipitation technique prior to the pyrolysis process. The biochars obtained were characterized to determine their physicochemical, surface, and structural properties. The characterization revealed a porous surface with a 1013.52 m2/g area for BCM and 903.67 m2/g for BCMFe. The pores were uniformly distributed, as observed in SEM images. BCMFe showed Fe3O4 particles on the surface with a spherical shape and a uniform distribution. According to FTIR analysis, the functional groups formed on the surface were aliphatic and carbonyl functional groups. Ash content in the biochar was 4.0% in BCM and 8.0% in BCMFe; the difference corresponded to the presence of inorganic elements. The TGA showed that BCM lost 93.8 wt% while BCMFe was more thermally stable due to the inorganic species on the biochar surface, with a weight loss of 78.6%. Both biochars were tested as adsorbent materials for methylene blue. BCM and BCMFe obtained a maximum adsorption capacity (qm) of 23.17 mg/g and 39.66 mg/g, respectively. The obtained biochars are promising materials for the efficient removal of organic pollutants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.