Abstract
Barium titanate BaTiO3 (BTO) - barium hexaferrite BaFe12O19 (BHF) nanocomposite could be as a raw material of multiferroic. Multiferroic is a class of materials with coupled electric, magnetic and structural order parameters that yield simultaneous effects of ferroelectric, ferromagnetism and ferroelasticity in the same material. This material has potential applications in such as spintronic devices and sensors. This work was an earlier research towards formation of multiferroic material. Knowing magnetic properties that will lead to a better understanding of magnetoelectric coupling in multiferroic material is the objective of this research.The samples were BTO and BHF prepared by sol-gel and then were mixed in bulk system by a conventional techniques in various of volume fraction between BTO : BHF = 1:1 ; 1:2 and 2:1, then samples were sintered at 925°C for 5, 10 and 15 hours. Composite phase study was carried out using X-Ray Diffraction (XRD). MPS Magnet Physik EP3 Permagraph L was used to characterize magnetic properties. XRD results confirm that composite with volume fraction of BTO : BHF = 1:1 with sintering at 925°C for 5 hours consists only of 2 phases BTO and BHF. There is impurity phase BaFe2O4 beside BTO and BHF phases at samples with volume fraction BTO:BHF = 1:2 and 2:1 for longer sintering. Composite with volume fraction of BTO:BHF = 1:1 for 5 hours sintering has a high value of remanent magnetization 0.081 T and the lowest value of intrinsic coersive 333.6 kA/m leading to good characteristics of multiferroic materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.