Abstract

In this paper, the local magnetic properties of La-doped Fe3O4 (5% and 10%) bulk and Nanoparticles (NPs) samples were studied by measuring hyperfine interactions in a wide range of temperature from 10 to 900 K with perturbed γ-γ angular correlation spectroscopy using 111In(111Cd) and 140La(140Ce) as probe nuclei. Results for the temperature dependence of the magnetic hyperfine field (Bhf) for bulk and NP samples, pure and doped with La show that its behavior follows a second order Brillouin-like transition from which the Curie temperature (TC) was determined (TC ∼ 855 K). Results also show two different regions in NP samples: the core where a minor fraction of probe nuclei with well defined magnetic dipole frequency was observed and the shell where a major fraction with broad distributed electric quadrupolar frequency (surface effect in NP) was observed. The Verwey transition TV ∼ 120 K, due the order disorder phase, was also observed in all samples. The results are discussed in terms of the magnetic exchange interaction between Fe2+ and Fe3+ ions in the two regions of NP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.