Abstract

In this study, we performed extensive Monte Carlo simulations to comprehensively analyze the magnetic properties of a single-layer MXene-like lattice. Our investigation involved the exploration of transition temperatures and the behavior of hysteresis cycles, all influenced by a series of key physical parameters. Additionally, we carefully mapped the magnetization as a function of temperature and crystal field, introducing variations in the exchange coupling to unveil their impact on the transition temperature. Furthermore, we investigated the behavior of hysteresis loops, complexly dissecting their responses to changes in exchange coupling, temperature, and crystal field. Significantly, our results highlight the central role of the crystal field in the formation of magnetization plateaus, thus providing promising avenues for applications in nanotechnology and advanced memory storage systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.