Abstract

For use in the voltammetric sensing of galactose-dependent proteins, we modified magnetic beads with a peptide that had both electroactive- and molecular recognition properties. The peptide consisted of a YXY sequence and behaved as an electron-transfer carbohydrate-mimetic peptide that would combine with proteins. With this tool, the protein could be detected via a label-free system. We synthesized several penta- and hexa-peptides with a cysteine residue on the C-terminals to examine the properties of peptides. These peptides contained amino acid residues (X) of alanine, serine, or tyrosine. The peptides were immobilized on magnetic beads via N-(8-maleimidocapryloxy) succinimide. Soybean agglutinin(SBA), the in vivo function of which has been well established in animals, was selected as a model protein. The protein was detected via the changes in electrode response due to the oxidation of tyrosine residues from the phenol group to quinone. As a result, SBA was selectively accumulated on the beads modified with YYYYC. The calibration curve of SBA was linear and ranged from 2.5 × 10−12 to 1.0 × 10−10 M. With this system, SBA was recovered in human serum at values that ranged from 98 to 103%. Furthermore, the beads with peptides were regenerated five times using a protein denaturant. Accordingly, this electrochemical system was simple and could be rapidly applied to the detection of galactose-recognition proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.