Abstract

We derive the amplitude expansion for a phase-field-crystal (APFC) model that captures the basic physics of magneto-structural interactions. The symmetry breaking due to magnetization is demonstrated, and the characterization of the magnetic anisotropy for a bcc crystal is provided. This model enables a convenient coarse-grained description of crystalline structures, in particular when considering the features of the APFC model combined with numerical methods featuring inhomogeneous spatial resolution. This is shown by addressing the shrinkage of a spherical grain within a matrix, chosen as a prototypical system to demonstrate the influence of different magnetizations. These simulations serve as a proof of concept for the modeling of manipulation of dislocation networks and microstructures in ferromagnetic materials within the APFC model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.