Abstract

We establish a method to interpret the magnetic anomaly due to 2D fault structures, with an evaluation of first moving average residual anomalies utilizing filters of increasing window lengths. After that, the buried fault parameters are estimated using the global particle swarm method. The goodness of fit among the observed and the calculated models is expressed as the root mean squared (RMS) error. The importance of studying and delineating the fault parameters, which include the amplitude factor, the depth to the upper edge, the depth to the lower edge, the fault dip angle, and the position of the origin of the fault, is: (i) solving many problem-related engineering and environmental applications, (ii) describing the accompanying mineralized zones with faults, (iii) describing geological deformation events, (iv) monitoring the subsurface shear zones, (v) defining the environmental effects of the faults before organizing any investments, and (vi) imaging subsurface faults for different scientific studies.Finally, we show the method applied to two theoretical models including the influence of the regional background and the multi-fault effect and to real field examples from Australia and Turkey. Available geologic and geophysical information corroborates our interpretations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.