Abstract

The magnetic field response of the Mott-insulating honeycomb iridate Na$_{2}$IrO$_{3}$ is investigated using torque magnetometry measurements in magnetic fields up to 60 tesla. A peak-dip structure is observed in the torque response at magnetic fields corresponding to an energy scale close to the zigzag ordering ($\approx 15~K$) temperature. Using exact diagonalization calculations, we show that such a distinctive signature in the torque response constrains the effective spin models for these classes of Kitaev materials to ones with dominant ferromagnetic Kitaev interactions, while alternative models with dominant antiferromagnetic Kitaev interactions are excluded. We further show that at high magnetic fields, long range spin correlation functions decay rapidly, signaling a transition to a long-sought-after field-induced quantum spin liquid beyond the peak-dip structure. Kitaev systems are thus revealed to be excellent candidates for field-induced quantum spin liquids, similar physics having been suggested in another Kitaev material $\alpha-$RuCl$_{3}$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.