Abstract

The magnetic properties of the pentacoordinate [MII (Me4 cyclam)N3 ]+ (Me4 cyclam=tetramethylcyclam; N3 =azido; M=Ni, Co) complexes were investigated. Magnetization and EPR studies indicate that they have an easy plane of magnetization with axial anisotropy parameters D close to 22 and greater than 30 cm-1 for the Ni and Co complexes, respectively. Ab initio calculations reproduced the experimental values of the zero-field splitting parameters and allowed the orientation of the anisotropy tensor axes with respect to the molecular frame to be determined. For M=Ni, the principal anisotropy axis lies along the Ni-Nazido direction perpendicular to the Ni(Me4 cyclam) mean plane, whereas for M=Co it lies in the Co(Me4 cyclam) mean plane and thus perpendicular to the Co-Nazido direction. These orientations match one of the possible solutions experimentally provided by single-crystal cantilever torque magnetometry. To rationalize the geometry and its impact on the orientation of the anisotropy tensor axis, calculations were carried out on model complexes [NiII (NCH)5 ]2+ and [CoII (NCH)5 ]2+ by varying the geometry between square pyramidal and trigonal bipyramidal. The geometry of the complexes was found to be the result of a compromise between the electronic configuration of the metal ion and the structure-orienting effect of the Me4 cyclam macrocycle. Moreover, the orientation of the anisotropy axes is mainly dependent on the geometry of the complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call