Abstract

This experimental work evaluates the magnetic response of 25-nm-thick Gd thin film and 1400 × 70 × 50 nm3 Gd nanobar structures. Neither the thin film nor the nanobars exhibited single domain behavior at temperatures down to 53 K. The Gd thin film exhibited a magnetocrystalline anisotropy induced spin-reorientation due to a hexagonal close-packed (002) texture, something different from that previously reported on epitaxial Gd thin film. The discrepancy is due to grain boundary induced spin-disorder in the nanosacle. The Gd nanobars had a saturation magnetization 75% smaller than the thin film or bulk and is attributed to oxidation as well as the crystallinity changes from hexagonal close-packed to face-centered cubic caused by stress induced stacking faults. These experimental results for both thin film and nanobar show that the crystallinity has a substantial impact to the magnetic anisotropy of Gd nanostructures as well as the formation of single domain structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.