Abstract
An effective field model based on intrawire and interwire dipolar interactions has been developed in order to describe the magnetic anisotropy in arrays of homogeneous and multilayer nanowires. Variable angle ferromagnetic resonance (FMR) and vibrating sample magnetometry (VSM) characterization techniques were used to determine the effective interaction field acting on Ni, CoFeB, and Ni/Cu nanowires. FMR spectra are well described by a rigid magnetization model and VSM data are in rough agreement with a mean longitudinal field model. FMR and VSM values of the effective fields are mutually consistent and in fair agreement with the values calculated with the model. The results show that the anisotropy of our arrays is strongly dominated by the dipolar interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Applied Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.