Abstract

The samples (La1-xEux)4/3Sr5/3Mn2O7 (x=0, 0.15) were prepared by the traditional solid-state reaction, and their magnetic and electrical properties were investigated. The magnetzation measurement reveals that as temperature lowers, all the samples undergo a complex magnetic transition process: they transform from the two-dimensional short-range ferromagnetic order at T* into the three-dimensional long-range ferromagnetic state at TC. With the increase of Eu doping, T* and TC are both reduced, and the sample (La0.85Eu0.15)4/3Sr5/3Mn2O7 exhibits spin-glass-like behaviour in a low temperature region. Electrical property measurements show that with the increase of Eu concentration, resistivity sharply increases, the metal-insulator transition temperature decreases and the magnetoresistance peak increases. These effects are attributed to the decrease of the average ionic radius diminution and the lattice distortion due to the substitution of the smaller Eu3+ ions for La3+ ions. In addition, the small-sized Eu3+ ion preferentially occupies the R site in the rock-salt layer, then the distributions of La3+, Sr3+, Eu3+ ions in the sample (La0.85Eu0.15)4/3Sr5/3Mn2O7 should be more orderly, so there is only one peak in the ρ-T curve of the sample with x=0.15.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call