Abstract

The results of magnetic susceptibility, χ(T), magnetization, σ(μ0H), and specific heat, CP(T), for GdCu4Au are presented. The room temperature powder X-ray diffraction studies indicate a cubic MgCu4Sn – type crystal structure with space group F4̄3m (No.216). The low field dc χ(T) data shows an antiferromagnetic – like (AFM) anomaly associated with a Néel temperature TN = 10.8 K for GdCu4Au. In the paramagnetic region above TN, χ(T) data follows the Curies – Weiss law with an effective magnetic moment μeff = 7.444(1) μB and paramagnetic Weiss temperature θP = -15.01(2) K. The experimental value of is close to the calculated value of 7.94 μB expected for the free Gd3+-ion. The field-cooled (FC) and zero-field-cooled (ZFC) χ(T) data provide evidence for the formation of spin-glass state with a freezing temperature Tf = 15 K. σ(μ0H) measured in the ordering region (below TN) shows that GdCu4Au undergoes metamagnetic transition above 0.7 T, characterized by a slight upward curvature above this field. Measurement of σ(μ0H) in the paramagnetic regions show a linear behaviour up to 0.7 T and a downward curvature at high fields. CP(T) data shows an AFM – like phase transition at TN = 10.4 K close to the phase transition observed in χ(T) results. The 4f-electron entropy reaches the value of Rln2 close to TN at 9.02 K and reaches the value of Rln(2J + 1) at T = 180 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call