Abstract

Regarding the various applications of cobalt ferrite as a magnetic ceramic in various scientific and industrial categories, it is essential to modify and optimize its microstructural and magnetic features. Chemical composition (doped elements and their quantities) is a determining factor which has been studied in this research. For this purpose, cobalt-dysprosium ferrite ceramic nanoparticles with the chemical formula Co1−xDyxFe2O4 (x=0, 0.01, 0.03, 0.05, 0.1) were synthesized by the co-precipitation chemical method and then analyzed from the structural and magnetic perspectives. The desirable spinel phase formation was confirmed via x-ray diffractometry, and the other crystallographic parameters and cation distribution were calculated. The microscopic image of the samples showed 15nm particles. The type and strength of the interionic bonds were determined by infrared spectroscopy. The hysteresis loop of the material was affected noticeably by doped elements as the room temperature saturation magnetization was decreased, but the residual magnetization and coercivity of ferrite were promoted by 50 and 150% after adding dysprosium, respectively. The maximum anisotropy constant, which is equal to 19.1erg/g for undoped cobalt ferrite, was increased to 45.2erg/g by doping 0.05 dysprosium. It is worth mentioning that introducing dopants into the lattice led to a great decrease in Curie temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.